ارزیابی الگوریتمهای انتخابات، رقابت استعماری و روش شبکه عصبی مصنوعی در بررسی روند افت تراز سطح ایستابی دشت رشتخوار

نویسندگان

  • یحیی چوپان گروه مهندسی آب دانشگاه علوم کشاورزی‌و منابع طبیعی گرگان
چکیده مقاله:

ارزیابی نوسانات سطح ایستابی در مناطق خشک و نیمهخشک کشور، نیازمند پیشبینی دقیق و کارآمدی از نوسانات آن میباشد. استفاده از روشهای نوین از جمله الگوریتمهای فراابتکاری، شبکههای عصبی مصنوعی و روشهای فازی، جهت تولید دادههای سطح آب مصنوعی و پیشبینی آینده تراز سطح ایستابی به دلیل کارآیی بسیار بالای خود، بسیار کاربردی است. در پژوهش حاضر، با استفاده از روشهای الگوریتمهای انتخابات و رقابت استعماری، شبکه عصبی مصنوعی، دادههای ماهانه به مدت 9 سال و همچنین عمق سطح آب زیرزمینی 10 حلقه چاه مشاهدهای، به پیشبینی زماتی 7 ساله تراز سطح ایستابی دشت رشتخوار در استان خراسان رضوی پرداخته شد. بهمنظور آموزش مدلها از اطلاعات 10 چاه مشاهدهای که دارای آمار 9 ساله (93-1385) بودند استفاده گردید، بهنحوی که از 70 درصد دادهها به عنوان داده های آموزشی به مدل معرفی و 30 درصد دادهها به عنوان آزمون برای واسنجی بهکار گرفته شد. نتایج روش الگوریتم انتخابات، تراز سطح ایستابی آبخوان رشتخوار را برای سال 1400 را بین 14 و 5/16 متر در مناطق مختلف دشت پیشبینی کرد .براساس محاسبههای انجام شده و نتایج بهدست آمده از پارامترهای آماری، الگوریتم انتخابات به ترتیب با مقادیر ریشه میانگین مربعات خطا (RMSE)، ضریب همبستگی (R2) و معیار نش- ساتکلیف (NSE)، 029/0، 90/0 و 73/0 نسبت به دو روش شبکه عصبی مصنوعی و الگوریتم رقابت استعماری، دارای توانایی قابل توجهی در پیشبینی تراز سطح ایستابی بود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از شبکه عصبی مصنوعی (ANN) و الگوریتم رقابت استعماری به‌منظور ارزیابی کیفیت آب زیرزمینی دشت جلفا برای مصارف مختلف

بررسی‌های کمی و کیفی آب‌های زیرزمینی اهمیت ویژه‌ای در مدیریت این منابع دارند. به‌کارگیری روش‌های نوین از جمله شبکه‌های عصبی و الگوریتم‌های تکاملی در تخمین کیفیت آب به دلیل سرعت، همگرایی و کارآیی بسیار بالای خود، موجب صرفهجویی، کاهش هزینهها و مدیریت هر چه بهتر می‌شود. هدف اصلی از انجام این تحقیق بررسی نتایج آنالیز شیمیایی آب‌های زیرزمینی دشت جلفا با توجه به نمونهبرداری از 14 حلقه چاه، نمودارهای ...

متن کامل

مدل‏سازی تراز آب زیرزمینی دشت میاندوآب با استفاده از الگوریتم‌های انتخابات، ژنتیک و روش شبکۀ عصبی مصنوعی

پیش‏بینی تغییرات تراز آب زیرزمینی در دوره‏های آتی و امکان برنامه‏ریزی و مدیریت منابع آب برای بهبود شرایط آبخوان در آینده، بسیار مهم است. در پژوهش حاضر، برای اولین بار با استفاده از الگوریتم انتخابات که یک الگوریتم تکرارشونده است و از انتخابات ریاست جمهوری الهام گرفته و با مجموعه‏ای از راه‏ حل‏های شناخته‌شده به عنوان جمعیت کار می‏کند، به پیش‏بینی تراز آب زیرزمینی دشت میاندوآب در استان آذربایجان ...

متن کامل

ارزیابی دقت روش شبکه های عصبی مصنوعی و زمین آمار در میان یابی سطح تراز آب های زیرزمینی؛ مطالعه موردی: دشت شبستر - صوفیان

ماهیت متغیرهای کمی و کیفی آب‌های زیرزمینی به دلیل تأثیر مستقیم در زندگی انسان، همواره یکی از موضوعات مطرح در تحقیقات علمی و دانشگاهی بوده است. هزینه‌بر بودن و عدم امکان مطالعه دقیق این منابع، لزوم استفاده از روش جدیدی را برای برآورد چنین متغیرهایی به طور کامل آشکار می­کند. در این میان روش‌<stro...

متن کامل

کاربرد روش ترکیبی زمین آمار و شبکه عصبی مصنوعی بهینه شده با الگوریتم ژنتیک در تخمین سطح ایستابی (مطالعه موردی: دشت های دزفول و زیدون)

     از آنجایی که برداشت آب از چاه‌های مشاهده‌ای موجود در دشت‌ها به صورت نقطه‌ای انجام می‌گیرد، لذا ضرورت دارد به منظور  محاسبه مقدار متوسط سطح آب زیرزمینی در دشت‌ها و تخمین سطح آب، اطلاعات حاصل از برداشت نقطه­ای به کل سطح تعمیم داده شود. هدف از انجام این پژوهش بررسی کاربرد روش ترکیبی زمین آمار و شبکه عصبی مصنوعی بهینه شده با الگوریتم ژنتیک در تخمین سطح آب زیرزمینی در دشت‌های دزفول و زیدون واقع...

متن کامل

شبیه سازی سطح ایستابی دشت ملایر براساس داده های هواشناسی با استفاده از شبکه‎ی عصبی مصنوعی

برای بررسی کارایی شبکه‎ی عصبی مصنوعی در شبیه‌سازی تغییرات سطح ایستابی سفره‎ی آب زیرزمینی دشت ملایر، از اطلاعات هواشناسی ایستگاه‌های تبخیرسنجی در سطح دشت، حجم آب برداشتی از سفره و مقادیر سطح ایستابی آن استفاده شد. از این اطلاعات، به‌عنوان ورودی شبکه‎ی عصبی مصنوعی نوع پرسپترون چندلایه در چارچوب چهار ساختار اطلاعاتی استفاده شد. ساختار اوّل، شامل میانگین اطلاعات دمای حدّاکثر هوا، دمای حدّاقل هوا، حدّاک...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 52  شماره 6

صفحات  1- 1

تاریخ انتشار 2020-08-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023